```
Question 1: The general solution of \sin x - 3 \sin 2x + \sin 3x = \cos x - 3 \cos 2x + \cos 3x is ______.
```

Solution:

$$\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$

$$\Rightarrow$$
 2 sin2x cosx - 3 sin2x - 2 cos2x cosx + 3 cos2x = 0

$$\Rightarrow$$
 sin2x (2cosx - 3) - cos2x (2 cosx - 3) = 0

$$\Rightarrow$$
 (sin2x - cos2x) (2 cosx - 3) = 0

$$\Rightarrow$$
 sin2x = cos2x

$$\Rightarrow$$
 2x = 2n π ± (π / 2 - 2x) i.e.,

$$x = n\pi / 2 + \pi / 8$$

Question 2: If $\sec 4\theta - \sec 2\theta = 2$, then the general value of θ is _____.

Solution:

$$\sec 4\theta - \sec 2\theta = 2 \Rightarrow \cos 2\theta - \cos 4\theta = 2 \cos 4\theta \cos 2\theta$$

$$\Rightarrow$$
 -cos 40 = cos 60

$$\Rightarrow$$
 2 cos 50 cos0 = 0

$$\Rightarrow$$
 H = [h cot 15°] / [cot 15° - 1] or

 $n\pi/5 + \pi/10$

Question 3: If $tan(\cot x) = \cot(tan x)$, then sin 2x =_____.

Solution:

$$tan(cotx) = cot(tanx) \Rightarrow tan(cotx) = tan(\pi/2 - tanx)$$

$$\cot x = n\pi + \pi / 2 - \tan x$$

$$\Rightarrow$$
 cotx + tanx = n π + π / 2

$$2 \sin 2x = n\pi + \pi / 2$$

$$\Rightarrow$$
 sin2x = 2 / [n π + { π / 2}]

$$= 4 / \{(2n + 1) \pi\}$$

Question 4: If the solution for θ of $cosp\theta + cosq\theta = 0$, p > 0, q > 0 are in A.P., then numerically the smallest common difference of A.P. is ______.

Solution:

Given
$$cosp\theta = -cosq\theta = cos(\pi + q\theta)$$

$$p\theta = 2n\pi \pm (\pi + q\theta), n \in I$$

$$\theta$$
 = [$(2n + 1)\pi$] / [$p - q$] or [$(2n - 1)\pi$] / [$p + q$], $n \in I$

Both the solutions form an A.P. $\theta = [(2n+1)\pi]/[p-q]$ gives us an A.P. with common difference $2\pi/[p-q]$ and $\theta = [(2n-1)\pi]/[p+q]$ gives us an A.P. with common difference $= 2\pi/[p+q]$.

Certainly,
$$\{2\pi / [p + q]\} < \{|2\pi / [p - q]|\}$$